【問1】半径rの円について、次の各問いに答えよ。
(1) 円によって囲まれた部分の面積Sを積分を使って求めよ。
(2) 円を直径の周りに1回転させてできる球の体積Vを積分を使って求めよ。
(3) 円の周の長さLを積分を使って求めよ。原点を中心とし半径rの円は媒介変数表示では
$$x = r \cos \theta, \quad y = r \sin \theta \quad (0 \leq \theta \leq 2\pi)$$
と表せます。

解
(1) 原点を中心とする半径rの円の方程は $x^2 + y^2 = r^2$
これより $y = \pm \sqrt{r^2 - x^2}$ 右図において上半分の曲線の方程式は
$y = \sqrt{r^2 - x^2}$ また円はx軸、y軸対称なグラフより右図の
斜線部分の面積を求め、それを4倍すれば求めまる円の面積Sになる。
$$S = 4 \int_0^r \sqrt{r^2 - x^2} \, dx \quad \text{①}$$
ここで $x = r \sin \theta$ とおいて、
両辺をθで微分する。$\frac{dx}{d\theta} = r \cos \theta$
$$\sqrt{r^2 - x^2} = \sqrt{r^2 - r^2 \sin^2 \theta} = r \sqrt{1 - \sin^2 \theta} = r \cos \theta$$
$\therefore 1 - \sin^2 \theta = \cos^2 \theta$ 0$\leq \theta \leq \frac{\pi}{2}$ より 0$\leq \cos \theta$ であるから
$$\int_0^r \sqrt{r^2 - x^2} \, dx = \int_0^{\frac{\pi}{2}} r \cos \theta \cos \theta \, d\theta = r^2 \int_0^{\frac{\pi}{2}} \cos^2 \theta \, d\theta = r^2 \int_0^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \, d\theta$$
$\therefore \text{半角の公式より} \quad \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$
$$= \frac{r^2}{2} \left[\theta + \frac{\sin 2\theta}{2} \right]_0^{\frac{\pi}{2}} = \frac{r^2}{2} \left[\frac{\pi}{2} + 0 \right] = \frac{r^2}{2} \cdot \frac{\pi}{2} = \frac{\pi r^2}{4} \quad \therefore \text{②}$$
②を①に代入して
$$S = 4 \cdot \frac{\pi r^2}{4} = \pi r^2 \quad \text{（答）}$$

(2) 原点を中心とする半径rの円の方程は $x^2 + y^2 = r^2$
これより $y^2 = r^2 - x^2$ また円はx軸、y軸対称な
グラフより直径の周りに1回転させてできる球の体積、上図の斜線部分をx軸回転してできる半球の体積を求め、
それを2倍したものと同じである。球の体積をVとする。
$$V = 2\pi \int_0^r \sqrt{r^2 - x^2} \, dx = 2\pi \left[\frac{r^2 \sqrt{r^2 - x^2}}{2} - \frac{x^3}{3} \right]_0^r = 2\pi \left(r^3 - \frac{r^3}{3} \right) = 2\pi \cdot \frac{r^3}{3} = \frac{4\pi r^3}{3} \quad \text{（答）}$$

(3) 原点を中心とし半径rの円は媒介変数表示では
$$x = r \cos \theta, \quad y = r \sin \theta \quad (0 \leq \theta \leq 2\pi)$$
と表せます。
「媒介変数表示の曲線の長さ」の公式にあてはめる。
$$\frac{dx}{d\theta} = -r \sin \theta \quad \frac{dy}{d\theta} = r \cos \theta$$
「曲線の面積・体積・曲線の長さ」の問題の解答

L=\int_0^{2\pi} \sqrt{(-\sin \theta)^2 + (r \cos \theta)^2} d\theta = \int_0^{2\pi} \sqrt{r^2(\sin^2 \theta + \cos^2 \theta)} d\theta = \int_0^{2\pi} r^2 d\theta = \left[r^2 \right]_0^{2\pi} = 2\pi r \quad \cdots \text{(答)}

（別解）（媒介変数表示を用いないで解く）

曲線の長さ公式L=\int_a^b \sqrt{1+|f'(x)|^2} dx を使用して求めてみる。先の図より x が 0 \leq x \leq r の範囲の部分

の円の周の長さを求めそれを 4 倍すると円の長さが求まる。

f(x) = \sqrt{r^2 - x^2} とおく。

f'(x) = \frac{1}{2}(r^2 - x^2)^{-\frac{1}{2}}(-2x) = -\frac{x}{\sqrt{r^2 - x^2}} よって |f'(x)|^2 = \frac{x^2}{r^2 - x^2} \therefore 1 + |f'(x)|^2 = \frac{r^2}{r^2 - x^2}

\sqrt{1+|f'(x)|^2} = \frac{r}{\sqrt{r^2 - x^2}}

L = 4\int_0^\pi \frac{r}{\sqrt{r^2 - x^2}} dx = 4r \left[\sqrt{r^2 - x^2} \right]_0^\pi = 4r \cdot \frac{\pi}{2} = 2\pi r \quad \cdots \text{(答)}

【問2】a > 0, b > 0 とする。楕円 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 について、次の各問いに答えよ。

（1）楕円によって囲まれた部分の面積 S を積分を使って求めよ。

（2）楕円によって囲まれた部分を x 軸の周りに 1 回転させたときと、y 軸の周りに 1 回転させたときのそれぞれでできる立体の体積を積分を使って求めよ。

（3）楕円の周の長さ L を定積分の形で表せ。楕円 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 は媒介変数表示では x = a \cos \theta, y = b \sin \theta

(0 \leq \theta \leq 2\pi) と表せます。またこの場合 \sqrt{\frac{a^2 - b^2}{a}} という形の定数が出てきますがこれを \frac{\sqrt{a^2 - b^2}}{a} = \epsilon

（ただし a > b）とおいて表してください。このとき \epsilon を楕円の離心率という。

この問題の計算結果は初等関数では表することはできません。

（解）

（1）楕円 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 を y について解く。

\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2} \quad y^2 = b^2 \left(1 - \frac{x^2}{a^2}\right) ここで曲線の存在範囲を考えると左辺は 0 以上より 1 - \frac{x^2}{a^2} = \frac{(a-x)(a+x)}{a^2} \geq 0 よって -a \leq x \leq a の範囲で楕円のグラフは出てくる。

- a \leq x \leq a のとき

y = \pm \frac{b}{a} \sqrt{a^2 - x^2} と表せる。ところで y = \frac{b}{a} \sqrt{a^2 - x^2} = f(x) とおくと
「曲線の面積・体積・曲線の長さ」の問題の解答

\[y = -\frac{b}{a}\sqrt{a^2-x^2} \] は \(y = -f(x) \) と書ける。\(y = f(x) \) と \(y = -f(x) \) は \(x \) 軸対称の関係にあるから、楕円の
グラフは \(x \) 軸対称の概形をしている。また \(f(-x) = \frac{b}{a}\sqrt{a^2-(-x)^2} = \frac{b}{a}\sqrt{a^2-x^2} = f(x) \) を満たす。

これより \(y = f(x) \) のグラフは \(y \) 軸対称の概形をしている。同様に \(-f(-x) = -f(x) \) を満たすので、
これより \(y = -f(x) \) のグラフは \(y \) 軸対称の概形をしている。これより楕円のグラフは \(y \) 軸対称の概形をしている。

そこで \(0 \leq x \leq a \) の部分の \(y = f(x) \) のグラフの概形を書いてみる。

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>...</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>0</td>
<td>...</td>
<td>(a)</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>0</td>
<td>...</td>
<td>(a)</td>
</tr>
</tbody>
</table>

\(f(x) = 0 \) を解くと \(x = 0 \) これをもとに増減表を作成する。

対称性を利用してグラフを書くと右のようなになる。

グラフより第1象限の部分の面積を求め、それを4倍すれば \(S \) となる。

\[S = 4\int_0^a \frac{b}{a}\sqrt{a^2-x^2} dx = \frac{4b}{a} \int_0^a \sqrt{a^2-x^2} dx = \frac{4b}{a} \cdot \frac{\pi a^2}{4} = \pi ab \quad \ldots \text{(答)} \]

\(\left(\int_0^a \sqrt{a^2-x^2} dx \right) \) は原点を中心とする半径 \(a \) の円の面積の \(\frac{1}{4} \) である

（2）グラフより第1象限の部分を回転してできる立体の体積を4倍すれば \(V \) となる。

(i) \(x \) 軸の周りに1回転させたとき

\[V = 2\pi \int_0^a y^2 dx = 2\pi \int_0^a \frac{b^2}{a^2} (a^2-x^2) dx = 2\pi \frac{b^2}{a^2} \left[\frac{a^2 x - \frac{1}{3} x^3}{3} \right]_0^a = \frac{2\pi b^2}{a^2} \cdot \frac{2a^3}{3} = \frac{4\pi ab^2}{3} \quad \ldots \text{(答)} \]

(ii) \(y \) 軸の周りに1回転させたとき

\[\begin{align*}
\text{円：} x^2 + \frac{y^2}{b^2} & = 1 \\
\text{半円：} x^2 & = 1 - \frac{y^2}{b^2} \\
x^2 & = a^2 \left(1 - \frac{y^2}{b^2} \right) = \frac{a^2}{b^2} (b^2 - y^2) \\
V & = 2\pi \int_0^b x^2 dy = 2\pi \int_0^b \frac{a^2}{b^2} (b^2 - y^2) dy = 2\pi \frac{a^2}{b^2} \left[\frac{b^2 y - \frac{1}{3} y^3}{3} \right]_0^b = \frac{2\pi a^2}{b^2} \cdot \frac{2b^3}{3} = \frac{4\pi a^2 b}{3} \quad \ldots \text{(答)}
\end{align*} \]

(i) (ii) からいえることは, 同じ円を使って回転する場合でも, \(x \) 軸の周りか \(y \) 軸の周りかで体積
が異なることがある。

(3) 「媒介変数表示の曲線の長さ」の公式 \(L = \int_a^b \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \ dt \) にあてはめる。

\[\frac{dx}{d\theta} = -a \sin \theta \quad \frac{dy}{d\theta} = b \cos \theta \quad \text{より} \]

\[L = \int_0^{2\pi} \sqrt{(-a \sin \theta)^2 + (b \cos \theta)^2} \ d\theta = \int_0^{2\pi} \sqrt{a^2(1 - \cos^2 \theta) + b^2 \cos^2 \theta} \ d\theta \]

\[= \int_0^{2\pi} \sqrt{a^2 - (a^2 - b^2) \cos^2 \theta} \ d\theta = \int_0^{2\pi} \sqrt{a^2(1 - \frac{a^2 - b^2}{a^2} \cos^2 \theta)} \ d\theta \]
「曲線の面積・体積・曲線の長さ」の問題の解答

\[a\int_0^{2\pi} \sqrt{1 - \left(\frac{\sqrt{a^2 - b^2}}{a}\right)^2 \cos^2 \theta} \, d\theta\]
ここで \(e = \frac{\sqrt{a^2 - b^2}}{a}\), \(a > b\) とおく。

\[= a\int_0^{2\pi} \sqrt{1 - e^2 \cos^2 \theta} \, d\theta\]
（答） ところでこの不定積分 \(\int \sqrt{1 - e^2 \cos^2 \theta} \, d\theta\) は、初等関数では
表すことができないもので、楕円積分と呼ばれている。

【問3】 \(a > 0\) とする。サイクロイド \(x = a(t - \sin t), \ y = a(1 - \cos t) \ (0 \leq t \leq 2\pi)\) について、
次の各問いに答えよ。
（1）サイクロイドと \(x\) 軸によって囲まれた部分の面積 \(S\) を求めよ。
（2）サイクロイドと \(x\) 軸によって囲まれた部分を \(x\) 軸の周りに1回転させてできる立体の体積 \(V\) を求めよ。
（3）サイクロイドの弧の長さ \(L\) を求めよ。

（解）
（1）サイクロイドの概形を書く。

\[
\frac{dx}{dt} = a(1 - \cos t) \quad \text{これより} \quad dx = a(1 - \cos t) \, dt, \quad \frac{dy}{dt} = a(-\sin t) = a\sin t
\]

\(0 \leq t \leq \pi\) のとき \(-1 \leq \cos t \leq 1\) より \(1 - \cos t \geq 0\) よって \(\frac{dx}{dt} \geq 0\) また等号は \(\cos t = 1\) より \(t = 0\)

さらにこのときは \(\sin t \geq 0\) より \(\frac{dy}{dt} \geq 0\) また等号は \(\sin t = 0\) より \(t = 0, \pi\)

\(\pi \leq t \leq 2\pi\) のとき \(-1 \leq \cos t \leq 1\) より \(1 - \cos t \geq 0\) よって \(\frac{dx}{dt} \geq 0\) また等号は \(\cos t = 1\) より \(t = 2\pi\)

さらにこのときは \(\sin t \leq 0\) より \(\frac{dy}{dt} \leq 0\) また等号は \(\sin t = 0\) より \(t = \pi, 2\pi\)

\(t = 0\) のとき \((x, y) = (a(0 - \sin 0), a(1 - \cos 0)) = (0, 0)\)

\(t = \pi\) のとき \((x, y) = (a(\pi - \sin \pi), a(1 - \cos \pi)) = (\pi a, 2a)\)

\(t = 2\pi\) のとき \((x, y) = (a(2\pi - \sin 2\pi), a(1 - \cos 2\pi)) = (2\pi a, 0)\)

これらをもとに進行表を作り、グラフを書く。

<table>
<thead>
<tr>
<th>(t)</th>
<th>(0)</th>
<th>…</th>
<th>(\pi)</th>
<th>…</th>
<th>(2\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{dx}{dt})</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{dy}{dt})</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(v)</td>
<td>↑</td>
<td>→</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((x, y))</td>
<td>((0, 0))</td>
<td></td>
<td>((\pi a, 2a))</td>
<td></td>
<td>((2\pi a, 0))</td>
</tr>
</tbody>
</table>

グラフより \(S = \int_0^{2\pi} y \, dx = \int_0^{2\pi} y \, \frac{dx}{dt} \, dt = \int_0^{2\pi} a(1 - \cos t) \cdot a(1 - \cos t) \, dt = a^2 \int_0^{2\pi} (1 - \cos t)^2 \, dt\)
「曲線の面積・体積・曲線の長さ」の問題の解答

\[a^2 \int_0^{2\pi} (1 - 2\cos t + \cos^2 t) \, dt = a^2 \int_0^{2\pi} \left(1 - 2\cos t + \frac{1 + \cos 2t}{2} \right) \, dt \]

\[\left(\because \text{半角の公式} \cos^2 t = \frac{1 + \cos 2t}{2} \text{より} \right) \]

\[= a^2 \int_0^{2\pi} \left(\frac{3}{2} - 2\cos t + \frac{1}{2} \cos 2t \right) \, dt = a^2 \left[\frac{3}{2} t - 2\sin t + \frac{1}{4} \sin 2t \right]_0^{2\pi} = a^2 \left(3\pi - 2 \cdot 0 + \frac{1}{4} \cdot 0 \right) = 3\pi a^2 \quad \ldots \text{（答）} \]

(2) \[V = \pi \int_0^{2\pi} y^2 \, dx = \pi \int_0^{2\pi} y^2 \frac{dx}{dt} \, dt = \pi \int_0^{2\pi} a^2 \left(1 - \cos t \right)^2 \cdot a (1 - \cos t) \, dt = \pi a^3 \int_0^{2\pi} (1 - \cos t)^3 \, dt \]

\[= \pi a^3 \int_0^{2\pi} \left(1 - 3\cos t + 3\cos^2 t - \cos^3 t \right) \, dt = \pi a^3 \int_0^{2\pi} \left(1 - 3\cos t + \frac{3(1 + \cos 2t)}{2} - \cos^3 t \right) \, dt \]

\[= \pi a^3 \int_0^{2\pi} \left(\frac{5}{2} - 3\cos t + \frac{3}{2} \cos 2t - \cos^3 t \right) \, dt = \pi a^3 \int_0^{2\pi} \left(\frac{5}{2} - 3\cos t + \frac{3}{2} \cos 2t \right) \, dt - \pi a^3 \int_0^{2\pi} \cos^3 t \, dt \quad \ldots \text{①} \]

ここで \[\int_0^{2\pi} \left(\frac{5}{2} - 3\cos t + \frac{3}{2} \cos 2t \right) \, dt = \left[\frac{5}{2} t - 3\sin t + \frac{3}{4} \sin 2t \right]_0^{2\pi} = 5\pi \quad \ldots \text{②} \]

\[\int_0^{2\pi} \cos^3 t \, dt = \int_0^{2\pi} \cos t \cdot \cos^2 t \, dt = \int_0^{2\pi} \cos (1 - \sin^2 t) \, dt \text{において} \, \sin t = u \text{とおく。両辺を} t \text{で微分する。} \]

\[\cos t = \frac{du}{dt} \quad \text{よって} \quad \cos t \, dt = du \]

\[\text{これより} \quad \int_0^{2\pi} \cos^3 t \, dt = \int_0^0 (1 - u^2) \, du = 0 \quad \ldots \text{③} \quad (\because \text{定積分において上端と下端の値が一致したので}) \]

(2), (3) を①に代入して \[V = \pi a^3 \cdot 5\pi - \pi a^3 \cdot 0 = 5\pi^2 a^3 \quad \ldots \text{（答）} \]

(3) 「媒介変数表示の曲線の長さ」の公式 \[L = \int_a^b \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \, dt \] に代入する。

\[\frac{dx}{dt} = a(1 - \cos t) \quad , \quad \frac{dy}{dt} = a(- \sin t) = a \sin t \quad \text{より} \]

\[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 = a^2(1 - \cos t)^2 + a^2 \sin^2 t = a^2(1 - 2 \cos t + \cos^2 t + \sin^2 t) = 2a^2(1 - \cos t) \]

\[= 2a^2 \cdot 2 \sin^2 \frac{t}{2} = 4a^2 \sin^2 \frac{t}{2} \quad \left(\because \text{半角の公式} \sin^2 \frac{t}{2} = \frac{1 - \cos t}{2} \text{より} \right) \]

\[\sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} = \sqrt{2a^2 \sin^2 \frac{t}{2}} = 2a \sin \frac{t}{2} \quad \text{より} \]

\[0 \leq t \leq 2\pi \quad \text{より} \quad 0 \leq \frac{t}{2} \leq \pi \text{であるから} \quad \sin \frac{t}{2} \geq 0 \quad \text{よって} \quad \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} = \sqrt{2a^2 \sin^2 \frac{t}{2}} = 2a \sin \frac{t}{2} \]

\[\text{よって} \quad L = \int_0^{2\pi} 2a \sin \frac{t}{2} \, dt = 2a \left[-2 \cos \frac{t}{2} \right]_0^{2\pi} = 2a(-2 \cos \pi + 2 \cos 0) = 2a \cdot 4 = 8a \quad \ldots \text{（答）} \]
（問4） $a > 0$ とする。アステロイド $x = acos^3 t, y = asin^3 t \ (0 \leq t \leq 2\pi)$ について，次の各問いに答えよ。

（1）アステロイドを交わり部分の面積 S を求めよ。

（2）アステロイドと x 軸によって囲まれた部分を x 軸の周りに1回転させてできる立体の体積 V を求めよ。

（3）アステロイドの周の長さ L を求めよ。

（アステロイドは星芒形（せいぼうけい）（星の光の形の意味）とも言う）

（解）

（1）アステロイド上の点 $P(acos^3 t, asin^3 t)$ と x 軸に関して対称な点を P_x とすると，

\[P_x(acos^3 t, -asin^3 t) \]

と表せるが $P_x(acos^3 t, -asin^3 t) = P_x(acos^3(2\pi - t), asin^3(2\pi - t))$ と変形できるので点 P_x はアステロイド上にあるから，アステロイドは x 軸対称のグラフである。

（注） $P_x(acos^3 t, -asin^3 t) = P_x(acos^3(-t), asin^3(-t))$

とも変形できるが，もともと角度の部分は $0 \leq t \leq 2\pi$ であったから負にはならないのでこの変形はできない。）

同様に $P_y(acos^3 t, asin^3 t)$ と y 軸に関して対称な点を P_y とすると，

$P_y(-acos^3 t, asin^3 t)$ と変形できるので点 P_y はアステロイド上にあるから，アステロイドは y 軸対称のグラフである。ここことより $0 \leq t \leq 2\pi$ の1/4の範囲である $0 \leq t \leq \frac{\pi}{2}$ でグラフを書く。

\[\frac{dx}{dt} = -3acos^2 t \sin t \quad \text{これより} \quad dx = -3acos^2 t \sin t \, dt \quad \cdots (1) \]

\[\frac{dy}{dt} = 3asin^2 t \cos t \]

$0 < t < \frac{\pi}{2}$ のとき $\frac{dx}{dt} < 0, \quad \frac{dy}{dt} > 0$ とし，$0 \leq t \leq \frac{\pi}{2}$ のとき

\[\frac{dx}{dt} = 0 \quad \text{となるのは} \quad t = 0, \frac{\pi}{2} \quad \text{とし，} \quad \frac{dy}{dt} = 0 \quad \text{となるのは} \quad t = 0, \frac{\pi}{2} \quad \text{とする。}

また $t = 0$ のとき $x = a, y = 0$ ， $t = \frac{\pi}{2}$ のとき $x = 0, y = a$ をもとに進行表を作成すると右図のようなになり，これを参考にグラフを作成する。

また x と t は右のように対応している。

グラフより第1象限部分の面積を求め，それを4倍すれば S となる。

\[S = 4 \int_0^a y \, dx = 4 \int_0^{\frac{\pi}{2}} \sin^3 t \cdot (-3acos^2 t \sin t) \, dt \quad (\cdot \quad 1 \quad より) \]

\[= 12a^3 \int_0^{\frac{\pi}{2}} \sin t \cos^2 t \cdot \sin t \, dt = 12a^3 \int_0^{\frac{\pi}{2}} \sin 2t \cdot \sin t \, dt \]

\[= 12a^3 \int_0^{\frac{\pi}{2}} \frac{\sin 2t}{2} \cdot \frac{1 - \cos 2t}{2} \, dt = 3a^3 \int_0^{\frac{\pi}{2}} \frac{1 - \cos 4t}{2} \, dt = 3a^3 \int_0^{\frac{\pi}{2}} (1 - \cos 4t)(1 - \cos 2t) \, dt \quad \cdots (2) \]
「曲線の面積・体積・曲線の長さ」の問題の解答

（1）の別解

\[
(1 - \cos 4t)(1 - \cos 2t) = 1 - \cos 2t - \cos 4t + \cos 4t \cos 2t = 1 - \cos 2t - \cos 4t + \frac{1}{2}(\cos 6t + \cos 2t)
\]

\[
= 1 - \frac{1}{2}\cos 2t - \cos 4t + \frac{1}{2}\cos 6t \cdots (3)
\]

（積和公式より） \(\cos 4t \cos 2t = \frac{1}{2}(\cos(4t + 2t) + \cos(4t - 2t)) = \frac{1}{2}(\cos 6t + \cos 2t)\)

（3）を（2）に代入して

\[
S = \frac{3}{4}a^2 \int_0^{\pi} \left(1 - \frac{1}{2}\cos 2t - \cos 4t + \frac{1}{2}\cos 6t\right)dt
\]

\[
= \frac{3}{4}a^2 \left[\frac{3}{2}t - \frac{1}{4}\sin 2t - \frac{1}{4}\sin 4t + \frac{1}{12}\sin 6t \right]_0^{\pi} = \frac{3}{8}a^2 \cdots \text{(答)}
\]

（1）の別解

\[
S = 4 \int_0^{\pi} y dx = 4 \int_0^{\pi} a \sin^t (-3 \cos^t t \sin t) dt
\]

とおくと

\[
S = 4 \int_0^{\pi} a \sin^t (-3 \cos^t t \sin t) dt = 12a^2 \int_0^{\pi} \sin^4 t \cos^2 t dt = 12a^2 \int_0^{\pi} \sin^4 t (1 - \sin^2 t) dt
\]

\[
= 12a^2 \int_0^{\pi} \sin^4 t - \sin^6 t dt = 12a^2 \left(\int_0^{\pi} \sin^4 t dt - \int_0^{\pi} \sin^6 t dt \right) \cdots (4)
\]

ここで \(\int_0^{\pi} \sin^4 t dt\) と \(\int_0^{\pi} \sin^6 t dt\) を求めるために次のように考えてみる。

\[
I_n = \int_0^{\pi} \sin^n t dt \quad (n \text{ は 0 以上の整数} \text{ とおく。} I_n = \int_0^{\pi} \sin^n t \cdot \sin^{n-1} t dt \text{ と変形して部分積分法の公式に})
\]

\[
I_n = \int_0^{\pi} \sin t \cdot \sin^{n-1} t dt = \left[-\cos t \cdot \sin^{n-1} t \right]_0^{\pi} - \int_0^{\pi} (-\cos t)(n-1)\sin^{n-2} t \cdot \cos t dt
\]

\[
= 0 + (n-1) \int_0^{\pi} \cos^2 t \cdot \sin^{n-2} t dt = (n-1) \int_0^{\pi} (1-\sin^2 t) \sin^{n-2} t dt = (n-1) \int_0^{\pi} \sin^{n-2} t dt - (n-1) \int_0^{\pi} \sin^n t dt
\]

\[
= (n-1)I_{n-2} - (n-1)I_n \quad \text{これより} \quad n I_n = (n-1) I_{n-2} \quad \text{よって} \quad I_n = \frac{n-1}{n} I_{n-2} \cdots (5)
\]

とところで \(I_0 = \int_0^{\pi} \sin^0 t dt = \int_0^{\pi} 1 dt = \left[t \right]_0^{\pi} = \frac{\pi}{2} \) また (5) で \(n = 2\) とおくと \(I_2 = \frac{1}{2} I_0 = \frac{1}{2} \times \frac{\pi}{2} = \frac{\pi}{4} \)
「曲線の面積・体積・曲線の長さ」の問題の解答

\[n=4 \text{ とおくと } I_4=\int_0^{\frac{\pi}{4}} \sin^4 t \, dt = \frac{3}{4} \int_0^{\frac{\pi}{4}} 1 \times \frac{\pi}{2} = \frac{3\pi}{16} \ldots (6) \]

\[n=6 \text{ とおくと } I_6=\int_0^{\frac{\pi}{6}} \sin^6 t \, dt = \frac{5}{6} \int_0^{\frac{\pi}{6}} \sin^4 t \times \frac{\pi}{3} = \frac{15\pi}{96} \ldots (7) \]

⑥, ⑦ を ④ に代入する。\[S=12a^3 \left(\frac{3\pi}{16} - \frac{15\pi}{96} \right) = \frac{12a^2 \cdot 3\pi}{96} = \frac{3\pi a^2}{8} \ldots (答) \]

（2）グラフより第 1 象限の部分を x 軸の周りに 1 回転させてできる立体の体積を 2 倍すれば V が求まる。

\[V=2\pi \int_0^{\frac{\pi}{2}} y^2 \, dy = 2\pi \int_0^{\frac{\pi}{2}} (\sin^3 t)^2 \cdot (-3\cos^2 t \cdot \sin t) \, dt = 6\pi a^3 \int_0^{\frac{\pi}{2}} \sin^7 t \cdot \cos^2 t \, dt \]

\[=6\pi a^3 \int_0^{\frac{\pi}{2}} (1 - \cos^2 t)^3 \cdot \cos^2 t \cdot \sin t \, dt = 6\pi a^3 \int_0^{\frac{\pi}{2}} (1 - 3\cos^2 t + 3\cos^4 t - \cos^6 t) \cdot \cos^2 t \sin t \, dt \]

\[=6\pi a^3 \left[u^2 - 3u^4 + 3u^6 - u^8 \right]_0^{u=1} = 6\pi a^3 \left(u^2 - 3 + 3 + 1 \right) = 32\pi a^3 \]

（3）グラフより第 1 象限の部分の長さを 4 倍すれば L になる。

「媒介変数表示の曲線の長さ」の公式 \[L=\int_0^{\frac{\pi}{2}} \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \, dt \] によってはめる。

\[\frac{dx}{dt} = -3a\cos^2 t \sin t \quad , \quad \frac{dy}{dt} = 3a\sin^2 t \cos t \]

\[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 = (-3a\cos^2 t \sin t)^2 + (3a\sin^2 t \cos t)^2 = 9a^2 (\cos^4 t \sin^2 t + \sin^4 t \cos^2 t) \]

\[=9a^2 \sin^2 t \cos^2 t (\cos^2 t + \sin^2 t) = 9a^2 (\sin t \cos t)^2 = 9a^2 \left(\frac{\sin 2t}{2} \right)^2 = \frac{9}{4} a^2 (\sin 2t)^2 \]

ここで \[0 \leq t \leq \frac{\pi}{2} \] であるから \[0 \leq 2t \leq \pi \] となっている。よって \[\sin 2t \geq 0 \] これより

\[\sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} = \sqrt{\frac{9}{4} a^2 (\sin 2t)^2} = \frac{3}{2} a \sin 2t \]

\[L=4 \int_0^{\frac{\pi}{2}} \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \, dt = 4 \int_0^{\frac{\pi}{2}} \frac{3}{2} a \sin 2t \, dt = 6a \int_0^{\frac{\pi}{2}} \sin 2t \, dt = 6a \left[-\frac{\cos 2t}{2} \right]_0^{\frac{\pi}{2}} \]

-8-
「曲線の面積・体積・曲線の長さ」の問題の解答

\[= 6a \left(-\frac{\cos \pi}{2} + \frac{\cos 0}{2} \right) = 6a \cdot 1 = 6a \quad \text{（答）} \]

【問5】 \(a > 0 \) とする。カテナリー \(y = -\frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right) \) の \(0 \leq x \leq t \) の部分を \(C \) とする。次の各問いに答えよ。

（1）カテナリーの \(C \) の部分と \(x \) 軸, \(y \) 軸および直線 \(x = t \) で囲まれた部分の面積 \(S \) を求めよ。

（2）カテナリーの \(C \) の部分と \(x \) 軸, \(y \) 軸および直線 \(x = t \) で囲まれた部分を \(x \) 軸の周りに1回転させてできる立体の体積 \(V \) を求めよ。

（3）カテナリーの \(C \) の部分の長さ \(L \) を求めよ。
（カテナリーは懸垂線 [けんすいせん] （まっすぐにたれさがる線という意味）とも言う）
＜形が懸垂線となっているものとしては、電柱の間の送電線などがある＞

（解）

（1）
\[
S = \int_{0}^{t} \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right) dx = \frac{a}{2} \int_{0}^{t} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right) dx = \frac{a^{2}}{2} \left[e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right]_{0}^{t} = \frac{a^{2}}{2} \left(e^{\frac{t}{a}} - e^{-\frac{t}{a}} - 1 \right) \quad \text{（答）}
\]

（2）
\[
y^{2} = \left\{ \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right) \right\}^{2} = \frac{a^{2}}{4} \left(e^{\frac{2x}{a}} + 2 + e^{-\frac{2x}{a}} \right)
\]
\[
V = \pi \int_{0}^{t} y^{2} dx = \pi \int_{0}^{t} \frac{a^{2}}{4} \left(e^{\frac{2x}{a}} + 2 + e^{-\frac{2x}{a}} \right) dx = \frac{\pi a^{2}}{4} \int_{0}^{t} \left(e^{\frac{2x}{a}} + 2 + e^{-\frac{2x}{a}} \right) dx
\]
\[
= \frac{\pi a^{2}}{4} \left[\frac{a}{2} e^{\frac{2x}{a}} + 2x - \frac{a}{2} e^{-\frac{2x}{a}} \right]_{0}^{t} = \frac{\pi a^{2}}{4} \left[\frac{a}{2} \left(e^{\frac{2t}{a}} - e^{0} \right) + 2(t-0) - \frac{a}{2} \left(e^{-\frac{2t}{a}} - e^{0} \right) \right]
\]
\[
= \frac{\pi a^{2}}{4} \left(\frac{a}{2} e^{\frac{2t}{a}} - \frac{a}{2} + 2t - \frac{a}{2} e^{-\frac{2t}{a}} + \frac{a}{2} \right) = \frac{\pi a^{2}}{8} \left(e^{\frac{2t}{a}} + 2t - \frac{1}{e^{\frac{2t}{a}}} \right) \quad \text{（答）}
\]

（3）曲線の長さの公式 \(L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx \) に代入する。

\[y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right) = f(x) \quad \text{とおく。} \quad f'(x) = \frac{a}{2} \left(\frac{1}{a} e^{\frac{x}{a}} - \frac{1}{a} e^{-\frac{x}{a}} \right) = \frac{1}{2} \left(e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right)
\]
\[[f'(x)]^{2} = \left(\frac{1}{2} \left(e^{\frac{x}{a}} - e^{-\frac{x}{a}} \right) \right)^{2} = \frac{1}{4} \left(e^{\frac{2x}{a}} - 2 + e^{-\frac{2x}{a}} \right)
\]
\[L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx = \int_{a}^{t} \sqrt{1 + \frac{1}{4} \left(e^{\frac{2x}{a}} - 2 + e^{-\frac{2x}{a}} \right)} dx = \int_{0}^{t} \sqrt{\frac{1}{4} \left(e^{\frac{2x}{a}} + 2 + e^{-\frac{2x}{a}} \right)} dx
\]

-9-
「曲線の面積・体積・曲線の長さ」の問題の解答

\[
\frac{1}{2} \int_0^a \sqrt{\left(e^x + e^{-x} \right)^2} \, dx = \frac{1}{2} \int_0^a \left(e^x + e^{-x} \right) \, dx = \frac{1}{2} \left[a \left(e^x - e^{-x} \right) \right]_0^a = \frac{a}{2} \left(e^a - e^{-a} \right) = \frac{a}{2} \left(e^x - \frac{1}{e^x} \right) \quad \cdots \text{答}
\]

これより \(S = aL \) が成立する。